Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## catena-Poly[[dichloridonickel(II)]- $\mu$ -1,2di-4-pyridylethane- $\kappa^2 N:N'$ ]

#### Ling Zhang\* and Jian Yu

Department of Chemistry, Lishui University, 323000 Lishui, Zhejiang, People's Republic of China Correspondence e-mail: zjlsxyzl@126.com

Received 9 May 2007; accepted 17 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.144; data-to-parameter ratio = 14.9.

The title compound,  $[NiCl_2(C_{12}H_{12}N_2)]_n$ , is a nickel complex polymer bridged by 1,2-bis(4-pyridyl)ethane ligands. The Ni<sup>II</sup> center is coordinated in a distorted tetrahedral geometry by two Cl ligands and two N atoms from two 1,2-bis(4-pyridyl)ethane ligands, forming a one-dimensional zigzag chain.

#### **Related literature**

For related literature, see: Brammer (2004); Carlucci *et al.* (2003); Ghosh *et al.* (2004); Hong *et al.* (2005); Luo *et al.* (2003); Moulton & Zaworotko (2001); Woodward *et al.* (2005).



#### **Experimental**

Crystal data

| 14.018 (4) A |
|--------------|
| 87.988 (5)°  |
| 84.165 (5)°  |
| 84.475 (5)°  |
| 659.6 (4) Å  |
|              |

## metal-organic compounds

T = 298 (2) K

 $R_{\rm int} = 0.022$ 

 $0.38 \times 0.30 \times 0.30$  mm

3306 measured reflections 2297 independent reflections

1942 reflections with  $I > 2\sigma(I)$ 

Z = 2Mo  $K\alpha$  radiation  $\mu = 1.85 \text{ mm}^{-1}$ 

#### Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.511, T_{\rm max} = 0.574$ 

Refinement

S = 1.04

 $wR(F^2) = 0.144$ 

2297 reflections

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 

154 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.98 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{min} = -1.04 \text{ e} \text{ Å}^{-3}$ 

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Research Foundation of Lishui University (No. qn05002) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2165).

#### References

- Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.
- Bruker (1998). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 4.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.
- Ghosh, A. K., Ghoshal, D., Lu, T.-H., Mostafa, G. & Chaudhuri, N. R. (2004). *Cryst. Growth Des.* **4**, 851–857.
- Hong, S. J., Lee, J. H., Lee, E. Y., Kim, C., Kim, Y. & Kim, S.-J. (2005). Acta Cryst. E61, m1561–m1562.
- Luo, J.-H., Hong, M.-C., Wang, R.-H., Cao, R., Han, L. & Lin, Z.-Z. (2003). *Eur. J. Inorg. Chem.* pp. 2705–2710.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Woodward, J. D., Backov, R. V., Abboud, K. A., Koo, H.-J., Whangbo, M.-H., Meisel, M. W. & Talham, D. R. (2005). *Inorg. Chem.* 44, 638–648.

supplementary materials

Acta Cryst. (2007). E63, m1759 [doi:10.1107/S1600536807024324]

## *catena*-Poly[[dichloridonickel(II)]- $\mu$ -1,2-di-4-pyridylethane- $\kappa^2 N:N'$ ]

#### L. Zhang and J. Yu

#### Comment

Recently, there are of great interest in the design and synthesis of coordination complexes, such one-dimensional chains and ladders, two-dimensional grids, three-dimensional networks, interpenetrated modes and helical staircase networks, which are used as functional materials potentially applied in magnetism, molecular adsorption, optoelectronic devices, sensors, luminescent materials and catalysis (Moulton & Zaworotko, 2001; Carlucci *et al.*, 2003; Brammer, 2004). The flexible bridging ligand 1,2-bis(4-pyridyl)ethane (bpe) is useful in the formation of various frameworks (Luo *et al.*, 2003; Ghosh *et al.*, 2004; Hong *et al.*, 2005). We report here the crystal structure of the title Ni complex polymer, [NiCl<sub>2</sub>(bpe)]<sub>n</sub>, (I).

The Ni<sup>II</sup> center has a distorted tetrahedral geometry, which is coordinated by two N atoms from two bpe ligands and two Cl ligands, forming a one-dimensional helical chain (Fig. 1 and 2). The dihedral angle between two pyridine rings, C1—C5/N1 and C7—C11/N2, is 61.93 (3)°. One bpe is almost planar as shown by the C8—C9—C12—C12<sup>ii</sup> torsion angle of -6.1 (9)°, while the other is not planar but parallel, the C2—C3—C6—C6<sup>i</sup> angle and the interplanar distance between the pyridine rings being 105.4 (6)° and 1.452 (2) Å, respectively [symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 2, -z + 2]. The angles of C3—C6—C6<sup>i</sup> and C9—C12—C12<sup>ii</sup> are also different, they are 111.6 (4) and 115.2 (5)°. The Ni···Ni<sup>i</sup> and Ni···Ni<sup>ii</sup> distances are 13.441 (3) and 13.279 (3) Å, respectively.

#### **Experimental**

The title complex was prepared by the addition of a stoichiometric amount of NiSO<sub>4</sub> (0.18 g, 20 mmol), NaOH (0.12 g, 30 mmol) and HCl (1 mol/L, 0.1 ml) to a hot aqueous solution of bpe (0.031 g, 12 mmol). The resulting solution was filtered, and green single crystals were obtained at room temperature over several days.

#### Refinement

H atoms were placed in calculated positions (C—H = 0.93-0.97 Å) refined using a riding model, with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The deepest hole in the difference Fourier map is located 0.95 Å from atom Ni1.

**Figures** 



Fig. 1. Part of the polymeric structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 50% probability displacement ellipsoids. The suffixes A and B correspond to symmetry codes (-x, -y + 2, -z + 2) and (-x + 1, -y, -z + 1), respectively.



Fig. 2. A packing diagram of (I), viewed along the *a* axis.

## *catena*-Poly[[dichloridonickel(II)]- $\mu$ -1,2-di-4-pyridylethane- $\kappa^2 N:N'$ ]

| Z = 2                                        |
|----------------------------------------------|
| $F_{000} = 320$                              |
| $D_{\rm x} = 1.580 {\rm ~Mg~m}^{-3}$         |
| Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Cell parameters from 1592 reflections        |
| $\theta = 2.7 - 25.5^{\circ}$                |
| $\mu = 1.85 \text{ mm}^{-1}$                 |
| T = 298 (2)  K                               |
| Block, green                                 |
| $0.38 \times 0.30 \times 0.30 \text{ mm}$    |
|                                              |
|                                              |

#### Data collection

| Bruker APEXII area-detector<br>diffractometer               | 2297 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 1942 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.022$                  |
| Detector resolution: none pixels mm <sup>-1</sup>           | $\theta_{max} = 25.1^{\circ}$          |
| T = 298(2)  K                                               | $\theta_{\min} = 1.5^{\circ}$          |
| $\varphi$ and $\omega$ scan                                 | $h = -4 \rightarrow 6$                 |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | $k = -9 \rightarrow 10$                |
| $T_{\min} = 0.511, \ T_{\max} = 0.574$                      | $l = -16 \rightarrow 16$               |
| 3306 measured reflections                                   |                                        |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                             |
|---------------------------------|----------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                         |
| $R[F^2 > 2\sigma(F^2)] = 0.050$ | H-atom parameters constrained                                                    |
| $wR(F^2) = 0.144$               | $w = 1/[\sigma^2(F_o^2) + (0.1008P)^2 + 0.3P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.04                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                              |

2297 reflections

154 parameters

 $\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct

Extinction correction: none methods

#### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{max} = 0.98 \text{ e } \text{\AA}^{-3}$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| x           | У                                                                                                                                                                                                                                                                                                                                                               | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $U_{\rm iso}$ */ $U_{\rm eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.88487 (9) | 0.54655 (5)                                                                                                                                                                                                                                                                                                                                                     | 0.74751 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0401 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.0080 (2)  | 0.70646 (11)                                                                                                                                                                                                                                                                                                                                                    | 0.62712 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0507 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.1490 (2)  | 0.42178 (12)                                                                                                                                                                                                                                                                                                                                                    | 0.84309 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0505 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.7275 (6)  | 0.3808 (3)                                                                                                                                                                                                                                                                                                                                                      | 0.6836 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0379 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.6308 (6)  | 0.6763 (4)                                                                                                                                                                                                                                                                                                                                                      | 0.8355 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0397 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.5435 (8)  | 0.4129 (4)                                                                                                                                                                                                                                                                                                                                                      | 0.6284 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0431 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.4844      | 0.5148                                                                                                                                                                                                                                                                                                                                                          | 0.6205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.052*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4336 (8)  | 0.3063 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.5819 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0460 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.3057      | 0.3359                                                                                                                                                                                                                                                                                                                                                          | 0.5435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.055*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.5183 (8)  | 0.1532 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.5935 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0442 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.7074 (9)  | 0.1187 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.6504 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0541 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.7696      | 0.0175                                                                                                                                                                                                                                                                                                                                                          | 0.6592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.065*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.8075 (9)  | 0.2329 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.6952 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0491 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.9343      | 0.2062                                                                                                                                                                                                                                                                                                                                                          | 0.7346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.059*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4100 (9)  | 0.0308 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.5416 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0517 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.2548      | 0.0729                                                                                                                                                                                                                                                                                                                                                          | 0.5177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.062*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.3724      | -0.0523                                                                                                                                                                                                                                                                                                                                                         | 0.5864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.062*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4599 (9)  | 0.7752 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.7981 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0536 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4614      | 0.7852                                                                                                                                                                                                                                                                                                                                                          | 0.7317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.064*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.2811 (9)  | 0.8629 (6)                                                                                                                                                                                                                                                                                                                                                      | 0.8555 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0604 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1651      | 0.9306                                                                                                                                                                                                                                                                                                                                                          | 0.8274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.072*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.2740 (8)  | 0.8505 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.9545 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0481 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4500 (9)  | 0.7474 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.9904 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0551 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4521      | 0.7342                                                                                                                                                                                                                                                                                                                                                          | 1.0565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.066*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.6215 (9)  | 0.6641 (5)                                                                                                                                                                                                                                                                                                                                                      | 0.9308 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0497 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.7379      | 0.5953                                                                                                                                                                                                                                                                                                                                                          | 0.9578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.060*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0849 (9)  | 0.9404 (5)                                                                                                                                                                                                                                                                                                                                                      | 1.0231 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0575 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0.0171     | 0.8695                                                                                                                                                                                                                                                                                                                                                          | 1.0596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.069*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | x<br>0.88487 (9)<br>1.0080 (2)<br>1.1490 (2)<br>0.7275 (6)<br>0.6308 (6)<br>0.5435 (8)<br>0.4844<br>0.4336 (8)<br>0.3057<br>0.5183 (8)<br>0.7074 (9)<br>0.7696<br>0.8075 (9)<br>0.9343<br>0.4100 (9)<br>0.2548<br>0.3724<br>0.4599 (9)<br>0.4614<br>0.2811 (9)<br>0.1651<br>0.2740 (8)<br>0.4500 (9)<br>0.4521<br>0.6215 (9)<br>0.7379<br>0.0849 (9)<br>-0.0171 | x $y$ $0.88487 (9)$ $0.54655 (5)$ $1.0080 (2)$ $0.70646 (11)$ $1.1490 (2)$ $0.42178 (12)$ $0.7275 (6)$ $0.3808 (3)$ $0.6308 (6)$ $0.6763 (4)$ $0.5435 (8)$ $0.4129 (4)$ $0.4844$ $0.5148$ $0.4336 (8)$ $0.3063 (5)$ $0.3057$ $0.3359$ $0.5183 (8)$ $0.1532 (5)$ $0.7074 (9)$ $0.1187 (5)$ $0.7696$ $0.0175$ $0.8075 (9)$ $0.2329 (5)$ $0.9343$ $0.2062$ $0.4100 (9)$ $0.0308 (5)$ $0.2548$ $0.0729$ $0.3724$ $-0.0523$ $0.4599 (9)$ $0.7752 (5)$ $0.4614$ $0.7852$ $0.2811 (9)$ $0.8629 (6)$ $0.1651$ $0.9306$ $0.2740 (8)$ $0.8505 (5)$ $0.4500 (9)$ $0.7474 (5)$ $0.4521$ $0.7342$ $0.6215 (9)$ $0.6641 (5)$ $0.7379$ $0.5953$ $0.0849 (9)$ $0.9404 (5)$ $-0.0171$ $0.8695$ | xyz0.88487 (9)0.54655 (5)0.74751 (3)1.0080 (2)0.70646 (11)0.62712 (7)1.1490 (2)0.42178 (12)0.84309 (7)0.7275 (6)0.3808 (3)0.6836 (2)0.6308 (6)0.6763 (4)0.8355 (2)0.5435 (8)0.4129 (4)0.6284 (3)0.48440.51480.62050.4336 (8)0.3063 (5)0.5819 (3)0.30570.33590.54350.5183 (8)0.1532 (5)0.5935 (3)0.7074 (9)0.1187 (5)0.6504 (3)0.76960.01750.65920.8075 (9)0.2329 (5)0.6952 (3)0.93430.20620.73460.4100 (9)0.0308 (5)0.51170.3724-0.05230.58640.4599 (9)0.7752 (5)0.7981 (3)0.46140.78520.73170.2811 (9)0.8629 (6)0.8555 (3)0.4500 (9)0.7474 (5)0.9904 (3)0.45210.73421.05650.6215 (9)0.6641 (5)0.9308 (3)0.73790.59530.95780.0849 (9)0.9404 (5)1.0231 (3)-0.01710.86951.0596 |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H12B         | 0.1743                                 | 0.9897          | 1.0681      | 0.0          | 69*          |              |
|--------------|----------------------------------------|-----------------|-------------|--------------|--------------|--------------|
| Atomic displ | Atomic displacement parameters $(A^2)$ |                 |             |              |              |              |
|              | $U^{11}$                               | U <sup>22</sup> | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
| Ni1          | 0.0508 (4)                             | 0.0359 (3)      | 0.0341 (3)  | -0.0033 (2)  | -0.0084 (2)  | -0.0001 (2)  |
| Cl1          | 0.0616 (7)                             | 0.0437 (6)      | 0.0459 (6)  | -0.0056 (5)  | -0.0051 (5)  | 0.0136 (4)   |
| Cl2          | 0.0571 (7)                             | 0.0537 (6)      | 0.0419 (6)  | -0.0005 (5)  | -0.0174 (4)  | 0.0064 (4)   |
| N1           | 0.0468 (18)                            | 0.0331 (17)     | 0.0346 (16) | -0.0041 (13) | -0.0069 (13) | -0.0018 (13) |
| N2           | 0.0473 (18)                            | 0.0357 (17)     | 0.0371 (17) | -0.0009 (14) | -0.0109 (14) | -0.0021 (13) |
| C1           | 0.053 (2)                              | 0.033 (2)       | 0.043 (2)   | -0.0005 (17) | -0.0095 (18) | 0.0001 (17)  |
| C2           | 0.052 (2)                              | 0.046 (2)       | 0.042 (2)   | -0.0053 (18) | -0.0135 (18) | -0.0006 (18) |
| C3           | 0.054 (2)                              | 0.043 (2)       | 0.037 (2)   | -0.0115 (18) | -0.0039 (17) | -0.0038 (17) |
| C4           | 0.073 (3)                              | 0.032 (2)       | 0.060 (3)   | -0.004 (2)   | -0.018 (2)   | -0.001 (2)   |
| C5           | 0.061 (3)                              | 0.037 (2)       | 0.053 (2)   | -0.0020 (18) | -0.022 (2)   | -0.0007 (18) |
| C6           | 0.064 (3)                              | 0.048 (2)       | 0.046 (2)   | -0.018 (2)   | -0.007 (2)   | -0.0066 (19) |
| C7           | 0.067 (3)                              | 0.057 (3)       | 0.034 (2)   | 0.012 (2)    | -0.0090 (19) | 0.0016 (19)  |
| C8           | 0.064 (3)                              | 0.064 (3)       | 0.048 (3)   | 0.022 (2)    | -0.008 (2)   | 0.005 (2)    |
| C9           | 0.056 (3)                              | 0.045 (2)       | 0.041 (2)   | 0.0023 (19)  | -0.0028 (18) | -0.0019 (18) |
| C10          | 0.068 (3)                              | 0.060 (3)       | 0.035 (2)   | 0.011 (2)    | -0.0083 (19) | -0.0005 (19) |
| C11          | 0.059 (3)                              | 0.048 (2)       | 0.041 (2)   | 0.0075 (19)  | -0.0082 (19) | -0.0005 (18) |
| C12          | 0.066 (3)                              | 0.058 (3)       | 0.044 (2)   | 0.012 (2)    | -0.001 (2)   | 0.001 (2)    |
|              |                                        |                 |             |              |              |              |

### Geometric parameters (Å, °)

| Ni1—N1      | 2.034 (3)   | C5—H5                   | 0.9300    |
|-------------|-------------|-------------------------|-----------|
| Ni1—N2      | 2.040 (3)   | C6—C6 <sup>i</sup>      | 1.520 (9) |
| Ni1—Cl2     | 2.2402 (12) | С6—Н6А                  | 0.9700    |
| Ni1—Cl1     | 2.2490 (12) | С6—Н6В                  | 0.9700    |
| N1—C1       | 1.324 (5)   | С7—С8                   | 1.385 (6) |
| N1—C5       | 1.342 (5)   | С7—Н7                   | 0.9300    |
| N2—C11      | 1.333 (5)   | C8—C9                   | 1.386 (6) |
| N2—C7       | 1.340 (5)   | C8—H8                   | 0.9300    |
| C1—C2       | 1.373 (6)   | C9—C10                  | 1.371 (6) |
| С1—Н1       | 0.9300      | C9—C12                  | 1.514 (6) |
| C2—C3       | 1.391 (6)   | C10-C11                 | 1.359 (6) |
| С2—Н2       | 0.9300      | C10—H10                 | 0.9300    |
| C3—C4       | 1.363 (6)   | C11—H11                 | 0.9300    |
| C3—C6       | 1.515 (5)   | C12—C12 <sup>ii</sup>   | 1.500 (9) |
| C4—C5       | 1.384 (6)   | C12—H12A                | 0.9700    |
| C4—H4       | 0.9300      | C12—H12B                | 0.9700    |
| N1—Ni1—N2   | 112.52 (13) | C3—C6—C6 <sup>i</sup>   | 111.6 (4) |
| N1—Ni1—Cl2  | 105.23 (9)  | С3—С6—Н6А               | 109.3     |
| N2—Ni1—Cl2  | 105.99 (10) | C6 <sup>i</sup> —C6—H6A | 109.3     |
| N1—Ni1—Cl1  | 105.07 (10) | С3—С6—Н6В               | 109.3     |
| N2—Ni1—Cl1  | 104.95 (10) | C6 <sup>i</sup> —C6—H6B | 109.3     |
| Cl2—Ni1—Cl1 | 123.23 (5)  | Н6А—С6—Н6В              | 108.0     |
| C1—N1—C5    | 116.7 (3)   | N2—C7—C8                | 121.8 (4) |
|             |             |                         |           |

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1—N1—Ni1      | 122.1 (3)  | N2—C7—H7                     | 119.1      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------------------------|------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C5—N1—Ni1      | 121.2 (3)  | С8—С7—Н7                     | 119.1      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C11—N2—C7      | 117.4 (3)  | С7—С8—С9                     | 120.4 (4)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C11—N2—Ni1     | 122.4 (3)  | С7—С8—Н8                     | 119.8      |
| $\begin{split} & \text{N1}-\text{C1}-\text{C2} & \text{I24.7}(4) & \text{C10}-\text{C9}-\text{C8} & \text{I16.3}(4) \\ & \text{N1}-\text{C1}-\text{H1} & \text{I17.7} & \text{C10}-\text{C9}-\text{C12} & \text{I19.4}(4) \\ & \text{C2}-\text{C1}-\text{H1} & \text{I17.7} & \text{C8}-\text{C9}-\text{C12} & \text{I24.3}(4) \\ & \text{C1}-\text{C2}-\text{C3} & \text{I18.4}(4) & \text{C11}-\text{C10}-\text{C9} & \text{I20.9}(4) \\ & \text{C1}-\text{C2}-\text{H2} & \text{I20.8} & \text{C11}-\text{C10}-\text{H10} & \text{I19.6} \\ & \text{C3}-\text{C2}-\text{H2} & \text{I20.8} & \text{C9}-\text{C10}-\text{H10} & \text{I19.6} \\ & \text{C4}-\text{C3}-\text{C2} & \text{I17.4}(4) & \text{N2}-\text{C11}-\text{C10} & \text{I23.2}(4) \\ & \text{C4}-\text{C3}-\text{C6} & \text{I21.6}(4) & \text{N2}-\text{C11}-\text{H11} & \text{I18.4} \\ & \text{C2}-\text{C3}-\text{C6} & \text{I20.9}(4) & \text{C10}-\text{C11}-\text{H11} & \text{I18.4} \\ & \text{C3}-\text{C4}-\text{C5} & \text{I20.6}(4) & \text{C12}^{\text{ii}}-\text{C12}-\text{H2A} & \text{I08.5} \\ & \text{C5}-\text{C4}-\text{H4} & \text{I19.7} & \text{C9}-\text{C12}-\text{H12A} & \text{I08.5} \\ & \text{C5}-\text{C4}-\text{H4} & \text{I19.7} & \text{C9}-\text{C12}-\text{H12A} & \text{I08.5} \\ & \text{N1}-\text{C5}-\text{C4} & \text{I22.1}(4) & \text{C12}^{\text{ii}}-\text{C12}-\text{H12B} & \text{I08.5} \\ & \text{N1}-\text{C5}-\text{H5} & \text{I19.0} & \text{H2A}-\text{C12}-\text{H12B} & \text{I08.5} \\ & \text{C4}-\text{C5}-\text{H5} & \text{I19.0} & \text{H2A}-\text{C12}-\text{H12B} & \text{I08.5} \\ & \text{C4}-\text{C5}-\text{H5} & \text{I19.0} & \text{H2A}-\text{C12}-\text{H12B} & \text{I07.5} \\ & \text{N2}-\text{N1}-\text{N1}-\text{N1}-\text{C1} & \text{58.7}(3) & \text{C6}-\text{C3}-\text{C4} & \text{13}(7) \\ & \text{C1}-\text{N1}-\text{N1}-\text{C1} & \text{73.7}(3) & \text{C1}-\text{N1}-\text{C5}-\text{C4} & \text{13}(7) \\ & \text{C1}-\text{N1}-\text{N1}-\text{C1} & \text{54.9}(3) & \text{N1}-\text{N1}-\text{C5}-\text{C4} & \text{13.8}(4) \\ & \text{N2}-\text{N1}-\text{N1}-\text{C5} & \text{-6.7}(4) & \text{C4}-\text{C5}-\text{C1} & \text{-17.8}(4) \\ & \text{N2}-\text{N1}-\text{N1}-\text{C5} & \text{-72.3}(7) \\ & \text{C1}-\text{N1}-\text{N1}-\text{C5} & \text{124.7}(3) & \text{C2}-\text{C3}-\text{C6}-\text{C6}^{\text{i}} & \text{72.3}(7) \\ & \text{C1}-\text{N1}-\text{N1}-\text{C5} & \text{124.7}(3) & \text{C2}-\text{C3}-\text{C6}-\text{C6}^{\text{i}} & \text{105.4}(6) \\ \\ & \text{N1}-\text{N1}-\text{N2}-\text{C11} & \text{-8.0}(4) & \text{N1}-\text{N2}-\text{C7}-\text{C8} & 0.6(7) \\ & \text{10}-\text{N1}-\text{N2}-\text{C1} & \text{106.5}(3) & \text{C1}-\text{N2}-\text{C7}-\text{C8} & 0.6(7) \\ & \text{C1}-\text{N1}-\text{N2}-\text{C1} & \text{106.5}(3) & \text{C1}-\text{N2}-\text{C1} & \text{-17.8}(6) \\ & \text{C1}-\text{N1}-\text{N2}-\text{C1} & \text{10.6}(5) & \text{C3} & \text{C3}-\text{C4}-\text{C5}-\text{C1} & \text{10.5}(5) \\ & \text{N1}-\text{N1}-\text{N1}-\text{C5} & \text{124.7}(3) & \text{C2}-\text{C3}-\text{C6} & \text{C6}^{\text{i}$ | C7—N2—Ni1      | 120.1 (3)  | С9—С8—Н8                     | 119.8      |
| $\begin{split} & \text{NI} = \text{C1} = \text{H1} & \text{I17.7} & \text{C10} = \text{C9} = \text{C12} & \text{I19.4} (4) \\ & \text{C2} = \text{C1} = \text{H1} & \text{I17.7} & \text{C8} = \text{C9} = \text{C12} & \text{I24.3} (4) \\ & \text{C1} = \text{C2} = \text{C3} & \text{I18.4} (4) & \text{C11} = \text{C10} = \text{C9} & \text{I20.9} (4) \\ & \text{C1} = \text{C2} = \text{H2} & \text{I20.8} & \text{C1} = \text{C10} = \text{H10} & \text{I19.6} \\ & \text{C3} = \text{C2} = \text{H2} & \text{I20.8} & \text{C9} = \text{C10} = \text{H10} & \text{I19.6} \\ & \text{C4} = \text{C3} = \text{C2} & \text{I17.4} (4) & \text{N2} = \text{C11} = \text{C10} & \text{I23.2} (4) \\ & \text{C4} = \text{C3} = \text{C2} & \text{I17.4} (4) & \text{N2} = \text{C11} = \text{C10} & \text{I23.2} (4) \\ & \text{C4} = \text{C3} = \text{C2} & \text{I20.6} (4) & \text{C10} = \text{C11} = \text{H11} & \text{I18.4} \\ & \text{C3} = \text{C4} = \text{C5} & \text{I20.6} (4) & \text{C12}^{\text{II}} = \text{C12} = \text{C9} & \text{I15.2} (5) \\ & \text{C3} = \text{C4} = \text{C4} & \text{I20.6} (4) & \text{C12}^{\text{II}} = \text{C12} = \text{H12A} & \text{I08.5} \\ & \text{C5} = \text{C4} = \text{H4} & \text{I19.7} & \text{C9} = \text{C12} = \text{H12A} & \text{I08.5} \\ & \text{N1} = \text{C5} = \text{C4} & \text{I22.1} (4) & \text{C12}^{\text{II}} = \text{C12} = \text{H12B} & \text{I08.5} \\ & \text{N1} = \text{C5} = \text{C4} & \text{I22.1} (4) & \text{C12}^{\text{II}} = \text{C12} = \text{H12B} & \text{I08.5} \\ & \text{C4} = \text{C5} = \text{H5} & \text{I19.0} & \text{H12A} = \text{C12} = \text{H12B} & \text{I08.5} \\ & \text{C4} = \text{C5} = \text{H5} & \text{I19.0} & \text{H12A} = \text{C12} = \text{H12B} & \text{I07.5} \\ & \text{C1} = \text{N1} = \text{N1} = \text{N1} = \text{N1} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} = \text{C1} & \text{C3} \\ & \text{C1} = \text{N1} = \text{N1} \\ & \text{C1} = \text{C1} = \text{C2} & \text{C2} \\ & \text{C1} = \text{C1} = \text{C1} \\ & \text{C1} = \text{C1} \\ & \text{C1} = \text{C1} & \text{C1} \\ & \text{C1} = \text{C1} = \text{C1} \\ & C$                                                                                   | N1—C1—C2       | 124.7 (4)  | C10—C9—C8                    | 116.3 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N1—C1—H1       | 117.7      | C10-C9-C12                   | 119.4 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2—C1—H1       | 117.7      | C8—C9—C12                    | 124.3 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1—C2—C3       | 118.4 (4)  | C11—C10—C9                   | 120.9 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С1—С2—Н2       | 120.8      | C11—C10—H10                  | 119.6      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С3—С2—Н2       | 120.8      | С9—С10—Н10                   | 119.6      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C4—C3—C2       | 117.4 (4)  | N2-C11-C10                   | 123.2 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C4—C3—C6       | 121.6 (4)  | N2-C11-H11                   | 118.4      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2—C3—C6       | 120.9 (4)  | C10-C11-H11                  | 118.4      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3—C4—C5       | 120.6 (4)  | C12 <sup>ii</sup> —C12—C9    | 115.2 (5)  |
| C5C4H4119.7C9C12H12A108.5N1C5C4122.1 (4) $C12^{1i}$ C12H12B108.5N1C5H5119.0C9C12H12B107.5C4C5H5119.0H12AC12H12B107.5N2Ni1N1C158.7 (3)C6C3C4C5178.4 (4)C12Ni1N1C1173.7 (3)C1N1C5C41.3 (7)C11Ni1N1C1-54.9 (3)Ni1N1C5C4-178.3 (4)N2Ni1N1C5-121.7 (3)C3C4C5N1-1.2 (8)C12Ni1N1C5-6.7 (4)C4C3C6C6^i-72.3 (7)C11Ni1N2C11106.5 (3)C11N2C7C80.6 (7)C12Ni1-N2C11-8.0 (4)Ni1N2C7C80.6 (7)C12Ni1-N2C11-139.8 (3)N2C7C8C9-0.1 (8)N1Ni1-N2C771.4 (4)C7C8C9C10-0.5 (8)C12Ni1-N2C7174.1 (3)C7C8C9C10-0.5 (8)C12Ni1-N2C7174.6 (3)C7C8C9C10-0.5 (8)C12Ni1-N2C7174.6 (3)C7C8C9C10-0.5 (7)C5N1-C1-C2-1.0 (7)C12C9C10C11179.6 (5)Ni1-N1-C1C2C30.6 (7)Ni1-N2C11C10-0.6 (7)N1C1C2C3C4-0.4 (6)C9C10C11-N20.0 (8)C1C2C3C6-178.1 (4)C10C9C12C12 <sup>ii</sup> 174.9 (6)C2C3C4C50.7 (7)C8C9C12C12 <sup>ii</sup> -6.1 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C3—C4—H4       | 119.7      | C12 <sup>ii</sup> —C12—H12A  | 108.5      |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C5—C4—H4       | 119.7      | C9—C12—H12A                  | 108.5      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N1C5C4         | 122.1 (4)  | C12 <sup>ii</sup> —C12—H12B  | 108.5      |
| C4—C5—H5119.0H12A—C12—H12B107.5N2—Ni1—N1—C158.7 (3)C6—C3—C4—C5178.4 (4)C12—Ni1—N1—C1173.7 (3)C1—N1—C5—C41.3 (7)C11—Ni1—N1—C1 $-54.9$ (3)Ni1—N1—C5—C4 $-178.3$ (4)N2—Ni1—N1—C5 $-121.7$ (3)C3—C4—C5—N1 $-1.2$ (8)C12—Ni1—N1—C5 $-6.7$ (4)C4—C3—C6—C6 <sup>i</sup> $-72.3$ (7)C11—Ni1—N1—C5 $124.7$ (3)C2—C3—C6—C6 <sup>i</sup> $105.4$ (6)N1—Ni1—N2—C11106.5 (3)C11—N2—C7—C8 $0.6$ (7)C12—Ni1—N2—C11 $-8.0$ (4)Ni1—N2—C7—C8 $178.6$ (4)C11—Ni1—N2—C11 $-139.8$ (3)N2—C7—C8—C9 $-0.1$ (8)N1—Ni1—N2—C7 $-71.4$ (4)C7—C8—C9—C10 $-0.5$ (8)C12—Ni1—N2—C7174.1 (3)C7—C8—C9—C10—C11 $0.5$ (7)C5—N1—C1—C2 $178.6$ (3)C7—N2—C11—C10 $-0.6$ (7)N1—N1—N2—C7 $-1.0$ (7)C12—C9—C10—C11 $179.6$ (5)Ni1—N1—C1—C2 $0.6$ (7)Ni1—N2—C11—C10 $-178.5$ (4)C1—C2—C3—C4 $-0.4$ (6)C9—C10—C11—N2 $0.0$ (8)C1—C2—C3—C4 $-0.4$ (6)C9—C10—C11—N2 $0.0$ (8)C1—C2—C3—C6 $-178.1$ (4)C10—C9—C12—C12 <sup>ii</sup> $174.9$ (6)C2—C3—C4—C5 $0.7$ (7)C8—C9—C12—C12 <sup>ii</sup> $-6.1$ (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1—C5—H5       | 119.0      | С9—С12—Н12В                  | 108.5      |
| N2-Ni1-N1-C158.7 (3)C6-C3-C4-C5178.4 (4)Cl2-Ni1-N1-C1173.7 (3)C1-N1-C5-C41.3 (7)Cl1-Ni1-N1-C1-54.9 (3)Ni1-N1-C5-C4-178.3 (4)N2-Ni1-N1-C5-121.7 (3)C3-C4-C5-N1-1.2 (8)Cl2-Ni1-N1-C5-6.7 (4)C4-C3-C6-C6 <sup>i</sup> -72.3 (7)Cl1-Ni1-N1-C5124.7 (3)C2-C3-C6-C6 <sup>i</sup> 105.4 (6)N1-Ni1-N2-C11106.5 (3)C11-N2-C7-C80.6 (7)Cl2-Ni1-N2-C11-8.0 (4)Ni1-N2-C7-C8178.6 (4)Cl1-Ni1-N2-C11-139.8 (3)N2-C7-C8-C9-0.1 (8)N1-Ni1-N2-C7-71.4 (4)C7-C8-C9-C10-0.5 (8)Cl2-Ni1-N2-C7174.1 (3)C7-C8-C9-C12-179.5 (5)Cl1-Ni1-N2-C7174.6 (3)C7-N2-C11-C10-0.6 (7)Ni1-N1-C1-C2178.6 (3)C7-N2-C11-C10-178.5 (4)C1-C2-C3-C4-0.4 (6)C9-C10-C11-N20.0 (8)C1-C2-C3-C4-0.4 (6)C9-C10-C11-N20.0 (8)C1-C2-C3-C4-C50.7 (7)C8-C9-C12-C12 <sup>ii</sup> 174.9 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C4—C5—H5       | 119.0      | H12A—C12—H12B                | 107.5      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N2—Ni1—N1—C1   | 58.7 (3)   | C6—C3—C4—C5                  | 178.4 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl2—Ni1—N1—C1  | 173.7 (3)  | C1—N1—C5—C4                  | 1.3 (7)    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl1—Ni1—N1—C1  | -54.9 (3)  | Ni1—N1—C5—C4                 | -178.3 (4) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N2—Ni1—N1—C5   | -121.7 (3) | C3—C4—C5—N1                  | -1.2 (8)   |
| Cl1—Ni1—N1—C5124.7 (3)C2—C3—C6—C6 <sup>i</sup> 105.4 (6)N1—Ni1—N2—C11106.5 (3)Cl1—N2—C7—C80.6 (7)Cl2—Ni1—N2—C11 $-8.0 (4)$ Ni1—N2—C7—C8178.6 (4)Cl1—Ni1—N2—C11 $-139.8 (3)$ N2—C7—C8—C9 $-0.1 (8)$ N1—Ni1—N2—C7 $-71.4 (4)$ C7—C8—C9—C10 $-0.5 (8)$ Cl2—Ni1—N2—C7174.1 (3)C7—C8—C9—C12 $-179.5 (5)$ Cl1—Ni1—N2—C742.3 (3)C8—C9—C10—C110.5 (7)C5—N1—C1—C2 $-1.0 (7)$ C12—C9—C10—C11 $179.6 (5)$ Ni1—N1—C1—C2178.6 (3)C7—N2—C11—C10 $-0.6 (7)$ N1—C1—C2—C30.6 (7)Ni1—N2—C11—C10 $-178.5 (4)$ C1—C2—C3—C4 $-0.4 (6)$ C9—C10—C11—N20.0 (8)C1—C2—C3—C6 $-178.1 (4)$ C10—C9—C12—C12 <sup>ii</sup> $174.9 (6)$ C2—C3—C4—C5 $0.7 (7)$ C8—C9—C12—C12 <sup>ii</sup> $-6.1 (9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl2—Ni1—N1—C5  | -6.7 (4)   | C4—C3—C6—C6 <sup>i</sup>     | -72.3 (7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl1—Ni1—N1—C5  | 124.7 (3)  | C2—C3—C6—C6 <sup>i</sup>     | 105.4 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N1—Ni1—N2—C11  | 106.5 (3)  | C11—N2—C7—C8                 | 0.6 (7)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl2—Ni1—N2—C11 | -8.0 (4)   | Ni1—N2—C7—C8                 | 178.6 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl1—Ni1—N2—C11 | -139.8 (3) | N2-C7-C8-C9                  | -0.1 (8)   |
| C12—Ni1—N2—C7174.1 (3)C7—C8—C9—C12 $-179.5$ (5)C11—Ni1—N2—C742.3 (3)C8—C9—C10—C110.5 (7)C5—N1—C1—C2 $-1.0$ (7)C12—C9—C10—C11179.6 (5)Ni1—N1—C1—C2178.6 (3)C7—N2—C11—C10 $-0.6$ (7)N1—C1—C2—C30.6 (7)Ni1—N2—C11—C10 $-178.5$ (4)C1—C2—C3—C4 $-0.4$ (6)C9—C10—C11—N20.0 (8)C1—C2—C3—C6 $-178.1$ (4)C10—C9—C12—C12 <sup>ii</sup> 174.9 (6)C2—C3—C4—C50.7 (7)C8—C9—C12—C12 <sup>iii</sup> $-6.1$ (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N1—Ni1—N2—C7   | -71.4 (4)  | C7—C8—C9—C10                 | -0.5 (8)   |
| C11—Ni1—N2—C742.3 (3)C8—C9—C10—C11 $0.5 (7)$ C5—N1—C1—C2 $-1.0 (7)$ C12—C9—C10—C11179.6 (5)Ni1—N1—C1—C2178.6 (3)C7—N2—C11—C10 $-0.6 (7)$ N1—C1—C2—C3 $0.6 (7)$ Ni1—N2—C11—C10 $-178.5 (4)$ C1—C2—C3—C4 $-0.4 (6)$ C9—C10—C11—N2 $0.0 (8)$ C1—C2—C3—C6 $-178.1 (4)$ C10—C9—C12—C12 <sup>ii</sup> 174.9 (6)C2—C3—C4—C5 $0.7 (7)$ C8—C9—C12—C12 <sup>ii</sup> $-6.1 (9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cl2—Ni1—N2—C7  | 174.1 (3)  | C7—C8—C9—C12                 | -179.5 (5) |
| C5-N1-C1-1.0 (7)C12-C9-C10-C11179.6 (5)Ni1-N1-C1-C2178.6 (3)C7-N2-C11-C10 $-0.6 (7)$ N1-C1-C2-C30.6 (7)Ni1-N2-C11-C10 $-178.5 (4)$ C1-C2-C3-C4-0.4 (6)C9-C10-C11-N20.0 (8)C1-C2-C3-C6 $-178.1 (4)$ C10-C9-C12-C12 <sup>ii</sup> 174.9 (6)C2-C3-C4-C50.7 (7)C8-C9-C12-C12 <sup>iii</sup> $-6.1 (9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cl1—Ni1—N2—C7  | 42.3 (3)   | C8—C9—C10—C11                | 0.5 (7)    |
| Ni1-N1-C1-C2178.6 (3)C7-N2-C11-C10 $-0.6$ (7)N1-C1-C2-C30.6 (7)Ni1-N2-C11-C10 $-178.5$ (4)C1-C2-C3-C4 $-0.4$ (6)C9-C10-C11-N2 $0.0$ (8)C1-C2-C3-C6 $-178.1$ (4)C10-C9-C12-C12 <sup>ii</sup> $174.9$ (6)C2-C3-C4-C5 $0.7$ (7)C8-C9-C12-C12 <sup>ii</sup> $-6.1$ (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C5—N1—C1—C2    | -1.0 (7)   | C12—C9—C10—C11               | 179.6 (5)  |
| N1-C1-C2-C3 $0.6$ (7)Ni1-N2-C11-C10 $-178.5$ (4)C1-C2-C3-C4 $-0.4$ (6)C9-C10-C11-N2 $0.0$ (8)C1-C2-C3-C6 $-178.1$ (4) $C10-C9-C12-C12^{ii}$ $174.9$ (6)C2-C3-C4-C5 $0.7$ (7) $C8-C9-C12-C12^{ii}$ $-6.1$ (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ni1—N1—C1—C2   | 178.6 (3)  | C7—N2—C11—C10                | -0.6(7)    |
| C1-C2-C3-C4 $-0.4$ (6)C9-C10-C11-N2 $0.0$ (8)C1-C2-C3-C6 $-178.1$ (4) $C10-C9-C12-C12^{ii}$ $174.9$ (6)C2-C3-C4-C5 $0.7$ (7) $C8-C9-C12-C12^{ii}$ $-6.1$ (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N1—C1—C2—C3    | 0.6 (7)    | Ni1—N2—C11—C10               | -178.5 (4) |
| $C1-C2-C3-C6$ $-178.1$ (4) $C10-C9-C12-C12^{ii}$ $174.9$ (6) $C2-C3-C4-C5$ $0.7$ (7) $C8-C9-C12-C12^{ii}$ $-6.1$ (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1—C2—C3—C4    | -0.4 (6)   | C9—C10—C11—N2                | 0.0 (8)    |
| C2-C3-C4-C5 0.7 (7) C8-C9-C12-C12 <sup>ii</sup> -6.1 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1—C2—C3—C6    | -178.1 (4) | C10—C9—C12—C12 <sup>ii</sup> | 174.9 (6)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2—C3—C4—C5    | 0.7 (7)    | C8—C9—C12—C12 <sup>ii</sup>  | -6.1 (9)   |

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+2, -z+2.

Fig. 1



